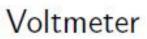
Benha University Faculty of Engineering (Shoubra) Electronics and Communications Engineering

ECE 211
Electrical and Electronic Measurements
(2020-2021)


Lecture 1: Introduction and Measurement Errors

Dr. Islam Mansour

Course Introduction: Electrical and Electronic Measurements

• This course will cover mainly the **electronic instruments**, which are useful for measuring either **electrical quantities or parameters**.

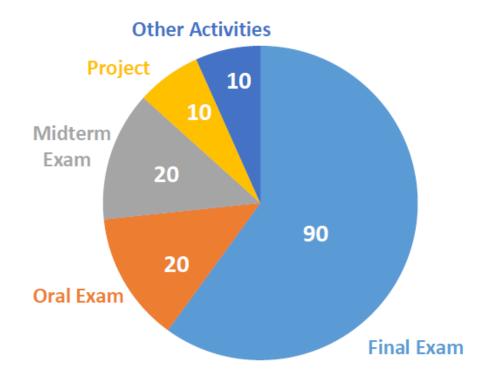
Ammeter

Ohmmeter

Digital Multimeter

Course Introduction: Electrical and Electronic Measurements

The course consists of the following parts: (The first seven weeks)


- 1. Measurement Errors and Measurement Characteristics
- 2. Electromechanical Instruments:
 - ➤ Permanent Magnet Moving Coil (PMMC).
 - > DC Voltmeter, DC Ammeter and Ohmmeter.
 - > AC Voltmeter, AC Ammeter.
- 3. Digital Type Multimeter:
 - ➤ Digital Voltmeter.
 - ➤ Digital Frequency Meter.
- 4. Sensors and Transducers: (To sense physical quantities)
 - ➤ Position and Displacement Sensors.
 - > Force Sensors
 - > Temperature Sensors

Textbooks and References:

- 1. Electronic Instrumentation and Measurements, David A. Bell.
- 2. Mechatronics: Electronic Control Systems in Mechanical Engineering, W. Bolton.

Course Evaluation:

➤ Total score: 150

Chapter 1:Measurement Systems, Units, and Standards

1.1 SI Mechanical units:

Fundamental Units:

Length (L): meter (m), Mass (M): kilogram (kg), Time (T): second (s)

Derived Units:

Area: Meter Squared

Force: Newton (N) \longrightarrow Force = mass × acceleration

Work: Joule (J) \longrightarrow Work = force \times distance

Power: Watt (W) \longrightarrow power = $\frac{work}{time}$

TABLE 1-2 SI Units, Symbols, and Dimensions

Quantity	Symbol	Unit	Unit symbol	Dimensions
Length	1	meter	m	[L]
Mass	m	kilogram	kg	[M]
Time	t	second	S	[T]
Area	A	square meter	m^2	$[L^2]$
Volume	V	cubic meter	m^3	$[L^3]$
Velocity	v	meter per second	m/s	$[LT^{-1}]$
Acceleration	а	meter per sec per sec	m/s^2	$[LT^{-2}]$
Force	F	newton	N	$[MLT^{-2}]$
Pressure	p	newton per square meter	N/m^2	$[ML^{-1}T^{-2}]$
Work	W	joule	J	$[ML^2T^{-2}]$
Power	P	watt	W	$[ML^2T^{-3}]$

1.2 Scientific Notation and Metric Prefixes:

- When working in electronics it is common to encounter very small and very large numbers.
- Scientific Notation is a means of using single-digit numbers plus powers of ten to express very large and very small numbers.

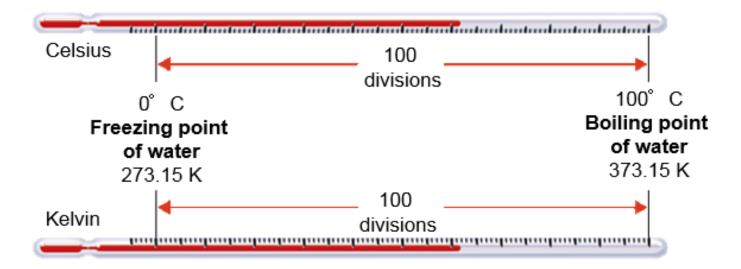
$$10\,000 = 1 \times 10 \times 10 \times 10 \times 10 = 1 \times 10^4$$
 $0.015 = 1.5 \times 10^{-2}$

$$0.015 = 1.5 \times 10^{-2}$$

• Metric Prefix: a letter symbols for the various multiples and submultiples of 10

TABLE 1-1 Scientific Notation and Metric Prefixes

Value	Scientific notation	Prefix	Symbol
1 000 000 000 000	10^{12}	tera	T
1 000 000 000	10^{9}	giga	G
1 000 000	10^{6}	mega	M
1000	10^{3}	kilo	K
100	10^{2}	hecto	h
10	10	deka	da
0.1	10^{-1}	deci	d
0.01	10^{-2}	centi	С
0.001	10^{-3}	milli	m
0.000 001	10^{-6}	micro	μ
0.000 000 001	10^{-9}	nano	n
0.000 000 000 001	10^{-12}	pico	p


1.3 SI Electrical units:

- Electric current (I): A
- Electric charge (Q): C \to Charge = current × time
- Voltage (V): $V = \frac{P}{I} = \frac{[ML^2T^{-3}]}{[I]}$ Resistance (R): ohm $\Rightarrow R = \frac{V}{I} = \frac{[ML^2T^{-3}I^{-1}]}{[I]}$

Quantity	Symbol	Unit	Unit symbol	Dimensions
Electric current	I	ampere	Α	[1]
Electric charge	Q	coulomb	C	[IT]
Emf	V	volt	V	$[ML^2T^{-3}I^{-1}]$
Electric field strength	5	volt per meter	V/m	$[MLT^{-3}I^{-1}]$
Resistance	R	ohm	Ω	$[ML^2T^{-3}I^{-2}]$
Capacitance	C	farad	F	$[M^{-1}L^{-2}T^4I^2]$
Inductance	L	henry	Н	$[ML^2T^{-2}I^{-2}]$
Magnetic field strength	Н	ampere per meter	A/m	$[IL^{-1}]$
Magnetic flux	Φ	weber	Wb	$[ML^2T^{-2}I^{-1}]$
Magnetic flux density	В	tesla	T	$[MT^{-2}I^{-1}]$

1.4 SI Temperature Scales:

• There are two temperature scales, the Celsius scale and the Kelvin (absolute) scale.

- <u>absolute zero</u>: the zero point on the Kelvin temperature scale, equivalent to −273.15°C
- In some countries as the United States, temperatures are usually given in degrees Fahrenheit.

$$K = {}^{\circ}C + 273$$

$$^{\circ}$$
C = K $- 273$

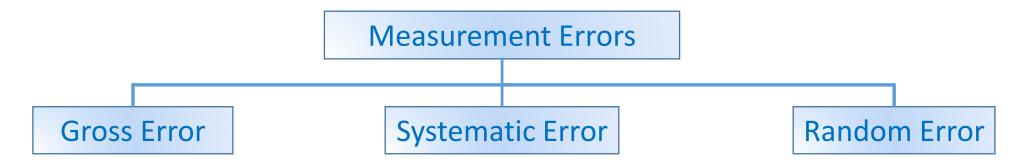
$$^{\circ}C = \frac{^{\circ}F - 32}{1.8}$$

Chapter 2: Measurement Errors

- 1. Types of Measurement Errors.
- 2. Absolute and Relative Errors.
- 3. Measurements Characteristics.
- 4. Measurement Error Combinations.

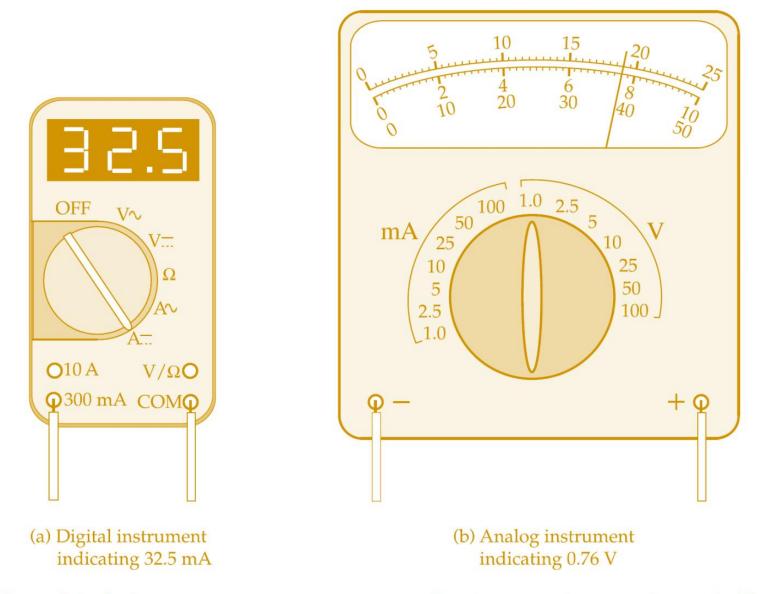
Chapter 2: Measurement Errors

- 1. Types of Measurement Errors.
- 2. Absolute and Relative Errors.
- 3. Measurements Characteristics.
- 4. Measurement Error Combinations.


Introduction:

- No electronic component or instrument is perfectly accurate; all have some error or inaccuracy.
- These errors are introduces due to either defect in the instrument, wrong observance, or environmental factors.
- These errors could combine to either:
 - ➤ Completely cancel each others.
 - > Create greater errors in measurement (Worst case)
- The worst case should always considered while performing measurement, where these errors could combine to create larger error.

2.1 Measurement Errors types:


Measurement errors can be categorized into three types:

Gross Error (Human Error)

Example

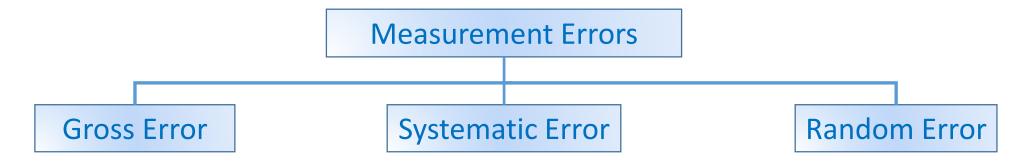
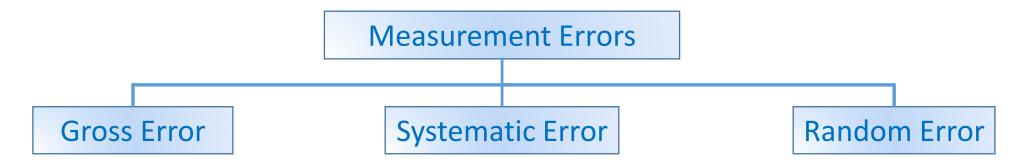

- Misunderstanding the unit in case of digital devices (21 V instead of 21 mV).
- A wrong scale may be chosen in analog instruments.
- Transpose of the readings while recording. (24.9 mV instead of 29.4 mV).

Figure 2-1 Serious measurement errors can occur if an instrument is not read correctly. The digital instrument is on a 300 mA range, so its reading is in milliamperes. For the analog meter, the range selection must be noted, and the pointer position must be read from the correct scale.

2.1 Measurement Errors types:

Measurement errors can be categorized into three types:


Systematic Error

Errors due to **problems with** instruments.

- ➤ **Instrument Errors:** May be due to incorrect device calibration.
- ➤ Environmental Errors: Change in environmental conditions may change some of device parameters.
- ➤ Observational Errors: Errors introduced by the observer as the parallax error.

2.1 Measurement Errors types:

Measurement errors can be categorized into three types:

Random Error

Errors due to unknown factors.

- > These errors are relatively **small**.
- These errors can be **reduced** by **increasing** the number of readings and using arithmetic mean.

Chapter 2: Measurement Errors

- 1. Types of Measurement Errors.
- 2. Absolute and Relative Errors.
- 3. Measurements Characteristics.
- 4. Measurement Error Combinations.

2.2 Absolute and Relative Errors:

The error in measuring instruments can be represented in two ways: **Absolute** and **Relative**

Absolute Error (Δe)

It is defined as the difference between the measured A_m and the true A_t values.

$$\Delta e = A_m - A_t$$

Example

An ammeter reads 6.7 A and the true value of the current is 6.54 A. The absolute error is

$$\Delta e = A_m - A_t = 6.7 - 6.54 = 0.16 A$$

2.2 Absolute and Relative Errors:

Relative Error (e_r)

It is defined as the ratio of the absolute error Δe to the true value A_t of the quantity being measured.

$$e_r = \frac{\Delta e}{A_t}$$

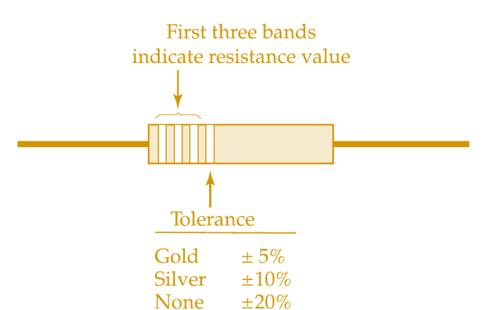
Percentage error

$$%e_r = e_r \times 100 = \frac{\Delta e}{A_t} \times 100$$

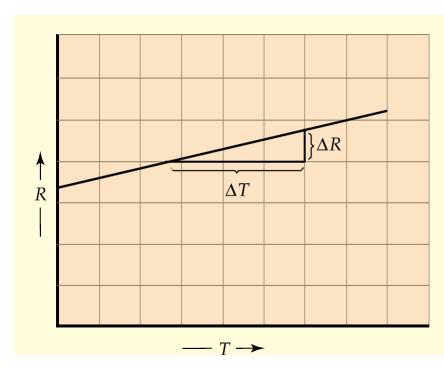
Example

The current through a resistor is 2.5 A, but the measurement yields a value of 2.45 A.

The absolute error is


$$\Delta e = A_m - A_t = 2.45 - 2.5 = -0.05A$$

The relative error


$$e_r = \frac{\Delta e}{A_t} = \frac{-0.05}{2.5} = -0.02$$

The percentage relative error

$$%e_r = e_r \times 100 = -2\%$$

Figure 2-2 The relative error in a measured or specified quantity is expressed as a percentage of the quantity. The absolute error is determined by converting the relative error into an absolute quantity.

Figure 2-3 Instead of percentages, errors can be expressed in parts per million (ppm) relative to the total quantity. Resistance change with temperature increase is usually stated in ppm/°C.

End of Lecture

Best Wishes